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The convolution formulas for the Cauchy distribution and for the dis-
tribution of the reciprocal of the square of a standard normal random variable
are here derived from the geometry of circularly symmetric @¢istributions on
the plane. Other known derivations seem quite different, and in a sense, less
elementary, though some are by no means less interesting. A few other illus-
trations of the geometrical method are also included.

let 2, a', b, and b' be points on a circle with a £ a' and
b £ b' , and suppose that the chords (a, a') and (b, b') intersect in a
point ¢ not exterior to the circle and not the same as a or b . Then
the angle (a, ¢, b) is half the sum of the arcs (a, b) and (a', b') .
This fact seems old and widely known., The special case in which a' « b' « ¢
is very familiar indeed (Euclid III 26 and 27), and the general case is easily
inferred from the special one with the aid of the construction line (a, b').

If a end b are two points in the Euclidean plane, the direction from
a to b is the vector from a to b normalized to unit length, and the

unoriented direction is the unordered couple consisting of the direction and

its negative, so that the unoriented direction from a to b 1s also the
unoriented direction from b to a . The notion of a uniformly distributed
random direction needs no explicit definition here, and a random unoriented
direction will be called uniformly distributed if it has the same distribu-
tion as the unoriented direction associated with a uniformly distributed ran-
dom direction. In this terminology, the geometric fact of the preceeding
paragraph has the following probabilistic interpretation.

lemma 1. If a random point P is uniformly distributed on the periphery
of a circle in the plane and ¢ 1is not exterior to that circle, then the
unoriented direction from ¢ to P is uniformly distributed.

For the present form of the lemmsa and of the argument leading to it,

I thank E. J. G. Pitman and Paul Iévy, respectively.
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Iet Z be a random vector distributed with circular symmetry in the
Euclidean vector plane. Assume, to avoid unimportant complications, that
Pr(Z=0) =0. Iet X and Y be a pair of cartesian coordinates of Z ,
and let R and A De the corresponding polar coordinates, so that:
X=RcosA; Y=RsinA ; R and A are independent; Pr(R > 0) = 1 ;
and A is uniformly distributed on the reals modulo 2am .

For this note, interest centers on the example in which X and Y are
independent and normally distributed with mean 0 and variance 1, which
will be called the standard example. The more general situation is treated
mainly to emphasize the structure of the arguments.

Iet "~' mean "{s distributed like".

Theorem i1. For all real f and g, fX + gY ~(f2 + 82)1/2 X

Proof: fX + gY = (f2 + gz)l/2 Rcos (A~ o), where o =« arctan f/g .

But A - a~A and is independent of R . Since X = R cos A, this com-
pletes the proof.

Specialized to the standard exemple, Theorem 1 is the convolution formula
for the normal distribution. The proof, however familiar, helps to set the
stage.

Lemma 2. If O and 171 are nonnegative and not both o,

XY X
(02x2 . T2Y2)1/2

g+ T

Proof: Expressed in polar coordinates, the lemma says that R times
a certain function of A is distributed like R cos A or, equivalently
RsinA . Since R and A are independent, it will be adequate to show
that the function of A, namely |

(o0 + 1) sin A cos A

h(A) = ’
(o coszA + 72 sinaA)l/2

is distributed like sin A . But
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h(A/2) = {({c + 1) sin A

{2(02 + 72) + 2(02 - Tz) cos A)I/2

sin A

2
{1 + 2p cos A + p2}1/2

where, p = (0 - 1}/{oc + 7). Since (s8in 24, cos 2A) ~ (sin A, cos A), what
needs to be shown is that h(A/2) ~sin A for each p in [-1, 1] .
Geometrically, if A is thought of as a random point P on the unit
circle, then h(A/2) 1is the sine of the angular coordinate B of that point
as viewed from the point ¢ = (-p, 0). If the angular coordinate associated
with the direction from ¢ to P is B, that associated with the opposite
direction is B + m, the sine of which is the negative of that of B . There-
fore, |sin B| depends only on the unoriented direction from ¢ to P . But
according to Lemma 1, this unoriented direction is distributed just as it
would be if B were wniformly distributed, that is, |sin B| ~ |sin A| .
This, together with the remark that the distribution of sin A and sin B
are both symmetric, completes the proof of the present lemma.
Corollary 1. If M and N are independent and normal with mean o,
2)1/2

then L = MN/Q° + N is normal with mean o0 and s.d.(L) = (s.d.(M)"} +

s.d. (M~ H)!

This corollary has bzen proved (Shepp 1964) by recognizing its obvious
equivalence to the standard-example application of the next theorem, which
itself is obviously equivalent to the lemma.

Theorem 2. TFor nonnegative p and g,

(p1/2 . q1/2)2

B a
— e w—— e

2 2
X2 X

123

Applied to the standard example, the theorem asserts that the distribu-
tion of the reciprocal of the square of a standard normal variable is stable

of order 1/2 . Doetsch (1936) attributes the fact to Cesaro and gives two
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interesting, but not very probabilistic, demonstrations. ILévy (194%0) inde-
pendently discovered the fact in the course of s beautiful investigation of
the Wiener process. For some further information, pursue "Stable distribu-
tions of order 1/2" in the Index of (Feller 1966).

The standard Cauchy distribution is the distribution of C = Y¥/X « tan A .

Theorem 3. For all real f and g not both o,

(£c + gy~ ~_£(23_..*_%_5_ .
(£° + g}
Proof:
-1 X
(fc L ] g) = Y + gx

f (-gY + IR | g
(£2 +g%) (fY + &X) f£° + g

f Y, _ &

(f2+g2)x f2+g2

~

2

as in the proof of Theorem 1.

Theorem 3 has been proved (Menan 1962, p. 1270) by direct calculation
with the Cauchy density.

Theorem 4. If 2Z' = (X', Y') is independent of Z and it too is dis-
tributed with circular symmetry, then, for all real f and g,

Xl 1 Xl
(1) e vgl it + el 2.

Proof: The left side of (1) is U/V, where

£YX' + Xy’

2.1/2

U =
(e%? + £27%)

and

Va 84
(gzxz + f‘?YZ)l/Z

Given X and Y, U is distributed like X' , as Theorem 1 shows. There-
fore U is independent of V and distributed like X' . According to

Lenma 2, V ~X/(|f] + |g]). This proves the theorem.
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Corollary 2. If C and C' are independent and have the standard Cauchy
distribution, then for all f and g, fC + gC' ~ (}f] + |gl)C .
This popular elementary fact has been demonstrated in several other ways.
Séi for example (Feller 1966, p. 50). The proof given here is easily extended
to the multivariate Cauchy distribution, that is, the distribution of a nor-
mally distributed vector divided by an independent, standard normally dis-

tributed number.
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